RINCIPLES OF OPERATING SYSTEMS







/O Systems

/O Hardware

Application 1/O Interface

Kernel I/O Subsystem

Transforming I/O Requests to Hardware Operations
Streams

Performance



/O Hardware

B Incredible variety of I1/O devices

B Common concepts
= Port - basic interface to CPU - status, control, data

= Bus (daisy chain or shared direct access) - main and
specialized local (ex: PCI for main and SCSI for disks)

= Controller (host adapter) - HW interface between Device
and Bus - an adapter card or mother board module
Controller has special purposes registers (commands,
etc.) which when written to causes actions to take place
- may be memory mapped

m |/O instructions control devices - ex: in, out for Intel
B Devices have addresses, used by

= Direct I/O instructions - uses I/O instructions
= Memory-mapped I/O - uses memory instructions



A Typical PC Bus Structure

SCSI bus

monitor processor

cache

graphics controller brlc;%i/trrrglagrory memory SCSI controller

expansion bus interface keyboard

IDE disk controller

@ @ expansion bus
@ @ parallel serial
port port




Device I/O Port Locations on PCs (partial)

Various ranges for a device includes both control and data ports

I/O address range (hexadecimal) device

000-00F DMA controller

020-021 interrupt controller

040-043 timer

200-20F game controller

2F8-2FF serial port (secondary)

320-32F hard-disk controller

378-37F parallel port

3D0-3DF graphics controller

3F0-3F7 diskette-drive controller

3F8-3FF serial port (primary)




Polling

Handshaking

Determines state of device
= command-ready

= busy

= Error

Busy-wait cycle to wait for 1/0O from device
When not busy - set data in data port, set command
In control port and let ‘er rip

Not desirable if excessive - since it is a busy wait
which ties up CPU & interferes with productive work

Remember CS220 LABsS



Interrupts

CPU Interrupt request line (IRQ) triggered by 1/O device

Interrupt handler receives interrupts
Maskable to ignore or delay some interrupts

Interrupt vector to dispatch interrupt to correct handler
= Based on priority
= Some unmaskable

Interrupt mechanism also used for exceptions

Application can go away after I/O request, but is til
responsible for transferring data to memory when it
becomes available from the device.

Can have “nested” interrupts (with Priorities)
See Instructors notes: “Use of Interrupts and DMA”

Soft interrupts or “traps” generated from OS In
system calls.



Interrupt-Driven I/O Cycle

1/0 controller

device driver initiates 1/O

Go away & do initiates 1/0

Something else ==> CPU executing checks for
interrupts between instructions
1

v

CPU receiving interrupt, input ready, output
transfers control to complete, or error

interrupt handler generates interrupt signal

IE

interrupt handler
processes data,
returns from interrupt

K

CPU resumes
processing of
interrupted task




Intel Pentium Processor Event-Vector Table

Interrupts 0-31 are non-maskable - cannot be disabled

vector number description

divide error
debug exception
null interrupt
breakpoint
INTO-detected overflow
bound range exception
invalid opcode
device not available
double fault
coprocessor segment overrun (reserved)
10 invalid task state segment
11 segment not present
12 stack fault
13 general protection
14 page fault
15 (Intel reserved, do not use)
16 floating-point error
17 alignment check
18 machine check
19D31 (Intel reserved, do not use)
32Db255 maskable interrupts

Co~NOOO,,wWMN-—=O




Direct Memory Access

With pure interrupt scheme, CPU was still
responsible for transferring data from controller to
memory (on interrupt) when device mad it available.

Now DMA will do this - all CPU has to do is set up
DMA and user the data when the DMA-complete
Interrupt arrives. ... Interrupts still used - but only to
signal DMA Complete.

Used to avoid programmed I/O for large data movement
Requires DMA controller

Bypasses CPU to transfer data directly between 1/O
device and memory

Cycle stealing: interference with CPU memory
Instructions during DMA transfer. - DMA takes
priority - CPU pauses on memory part of word.



Six Step Process to Perform DMA Transfer

1. device driver is told to
transfer disk data to
buffer at address X

5. DMA controller transfers 2. device driver tells disk
bytes to buffer X, controller to transfer C |
increasing memory bytes from disk to buffer cache
address and decreasing at address X
CuntiC=0

. when C = 0, DMA DMA/bus/interrupt )— CPU memory bus — | memory g buffer

interrupts CPU to signal controller
transfer completion

PCI bus

3. disk controller initiates
DMA transfer

4. disk controller sends
each byte to DMA
controller

IDE disk controller




